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Abstract— This paper studies low-latency streaming codes for
the multi-hop network. The source transmits a sequence of
messages to a destination through a chain of relays, and requires
the destination to reconstruct each message by its deadline.
We assume that each communication link is subjected to a certain
maximum number of packet erasures. The case of a single relay
(a three-node network) was considered in Fong et al. (2020).
A coding scheme known as symbol-wise decode and forward
was proposed. In the present work, we propose an alternative
scheme that is different from Fong et al. (2020) and still achieves
the same rate as in Fong et al. (2020) for the one hop case as
the field-size goes to infinity. Furthermore, our proposed scheme
naturally generalizes to the case of multiple-relay nodes yielding
new achievable rates for this setting. The main difference with
Fong et al. (2020) is that our proposed scheme exploits the ability
of the relay nodes to adapt the transmission based on the erasures
on the previous link. Hence, we refer to our scheme as “state-
dependent” and contrast it with the scheme in Fong et al. (2020)
that is state-independent. Our scheme requires the relay nodes
to append a header to the transmitted packets, and we show that
the size of the header does not depend on the field-size of the
code. We also derive an upper bound on the maximal streaming
rate achievable over a network with an arbitrary number of
relays. We show that this upper bound matches our achievable
rate in the special case when the maximal number of erasures
on the first link is greater than or equal to the maximal number
of erasures on each of the following links, and the field size goes
to infinity.

Index Terms— Streaming codes, delays, forward error correc-
tion (FEC).

I. INTRODUCTION

REAL-TIME interactive video streaming is an integral
part of the day-to-day activity of many people in the

world. Traditionally, most of the traffic on the internet is not
sensitive to the typical delay induced by the network. However,
as networks evolved, more and more people are using the
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network for real-time conversations, video conferencing, and
online monitoring. According to [2], IP video traffic will
account for 82 percent of traffic by 2022. Further, live video
is projected to grow 15-fold to reach 17 percent of Internet
video traffic by 2022.

All types of traffic are susceptible to errors, and therefore
many applications use an error-correcting mechanism. One
fundamental difference between real-time video streaming and
other types of traffic is the (much more stringent) latency
requirement each packet has to meet in order to provide a good
user experience. A very common error-correcting mechanism
is automatic repeat request (ARQ). Using ARQ means that
the latency (in case of an error) is at least three times the
one-way delay, which in many cases may violate the latency
requirements for real-time interactive video streaming.

An alternative method for handling errors in the transmis-
sion is forward error correction (FEC). Using FEC has the
potential to lower the recovery latency since it does not require
communication between the receiver and transmitter. However,
in many cases, when FEC is designed, the emphasis is on
its error-correcting capabilities while ignoring latency con-
straints. Two commonly used codes are Low-density parity-
check (LDPC) [3], [4] and digital fountain codes [5], [6]. The
typical block length of these codes is very long (usually a few
hundreds of symbols) hence precluding their use for real-time
interactive applications.

Low-latency FEC codes are already implemented and have
a noticeable impact on the quality of real-time interactive
applications. Typically, maximum-distance separable (MDS)
codes are used to transmit an extra parity-check packet per
every two to five packets [7]. For example, in [8], the FEC
implemented in Skype is described, and it is argued that this
mechanism is one of the main contributors to the success of
this application.

In this paper we build upon the line of work initiated
in [9], where a class of low-latency FEC (referred to as
streaming codes) was introduced and shown to achieve opti-
mal error correction for a class of burst-erasure channels.
This work was followed by a plurality of works [10]–[16]
which extended the channel model to contain both bursts and
arbitrary erasures. However, all these works focussed on a
point-to-point setting. The performance of streaming codes
for the three-node network was studied in [1]. The authors
propose a new coding scheme denoted as “symbol-wise”
decode and forward (SWDF) in which the relay forwards
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Fig. 1. Symbols generated in the L-node relay network at time i.

the recovered symbols (before the entire message can be
decoded) to the destination in a carefully selected manner.
The authors demonstrated that SWDF is superior to a naive
“message-wise” decode and forward strategy, where each
message must be fully decoded at the relay prior to forwarding
it. Unfortunately, this coding scheme does not easily scale
beyond the three-node relay network. A key property of the
coding scheme described in [1], is “state-independence”, i.e.,
it does not depend on the specific location of erasures in the
different segments. In this paper, we propose an alternative
scheme that can recover the achievable rate in [1] and also can
be generalized to any number of relays. Our proposed scheme
is a “state-dependent” scheme, i.e., it is a scheme that reorders
the symbols transmitted by each relay based on the erasure
patterns that occurred in the previous links. As a result, our
proposed scheme requires additional header to allow each relay
to encode the received symbols transmitted to the next relay.
We nevertheless show that the overhead due to the header
vanishes as the field size of the code increases. We further
derive an upper bound on the capacity in the proposed multi-
hop relay network setup and show that in the special case when
the link between the source and the first relay is subjected to
the highest number of erasures, the upper bound is achieved
up to an additional overhead (a required header).1

The rest of this paper is organized as follows. Section I-A
outlines the network model of interest. Section I-B presents
the formulation of streaming codes and outlines the known
results for basic network models. Section I-C describes the
results derived for the three-node network in [1] and discusses
the issue with the upper bound [17]. Section I-D presents
the main results of this paper. Section I-E we provide a
motivating example for our proposed approach and demon-
strate the sub-optimality of a straightforward extension of
the state-independent coding scheme. Section II provides an
upper bound for our proposed setting. Section III analyzes
state-dependent SWDF coding scheme for a multi-hop relay
network. We further analyze the size of the header required by
the suggested scheme and discuss how the overhead associated
with the header can be reduced in practice by either increasing
the field size or by concatenating multiple copies of the code.
Section IV provides an upper bound on the error probability
of using the state-dependent SWDF coding scheme when
used over a channel with random (i.i.d.) erasures. Section V
provides numerical results for different coding schemes used
over a four-node (two relay) network with random (i.i.d.)
erasures. Finally, Section VI provides an extension of the
presented results to the sliding window channel.

1Unfortunately, the proposed upper bound in [1] is incorrect in general,
as we discuss in detail in this paper in Section I-C.

A. Network Model

A source node wants to send a sequence of messages
{si}∞i=0 to a destination node with the help of L middle nodes
r1, . . . , rL. To ease notation, we denote the source node as r0,
and destination node as rL+1. Let k be a non-negative integer,
and n1, n2, . . . , nL+1 be L + 1 natural numbers.

Each si is an element in F
k where F is some finite field.

In each time slot i ∈ Z+, the source message si is encoded into
a length-n1 packet x(r0)

i ∈ F
n1 to be transmitted to the first

relay through the erasure channel (r0, r1). The relay receives
y(r1)

i ∈ F
n1 ∪ {∗} where y(r1)

i equals either x(r0)
i or the

erasure symbol “∗”. In the same time slot, relay r1 transmits
x(r1)

i ∈ F
n2 to relay r2 through the erasure channel (r1, r2).

Relay r2 receives y(r2)
i ∈ F

n2 ∪ {∗} where y(r2)
i equals

either x(r1)
i or the erasure symbol “∗”. The same process

continues (in the same time slot) until relay rL transmits
x(rL)

i ∈ F
nL+1 to the destination rL+1 through the erasure

channel (rL, rL+1). To simplify the analysis, we note that
we assume zero propagation delay and zero processing delay
for the transmission. Hence, in case no coding is applied
(n1 = n2 = . . . = nL+1 = k) and no erasures occur,
y(rL+1)

i = si. When such assumptions are relaxed, extensions
to the results described in the paper can be naturally described
(see, e.g. [18]).

We first assume that on the discrete timeline, each channel
(rj−1, rj) introduces up to Nj arbitrary erasures, respectively.
The symbols generated in the L-node relay network at time i
are illustrated in Figure 1.

B. Standard Definitions and Known Results

Definition 1: An (n1, n2, . . . , nL+1, k, T )F-streaming code
consists of the following:

1) A sequence of source messages {si}∞i=0 where si ∈ F
k.

2) An encoding function f
(r0)
i : F

k × . . . × F
k� �� �

i+1 times

→ F
n1 for

each i ∈ Z+, where f
(r0)
i is used by node r0 at time i

to encode si according to

x(r0)
i = f

(r0)
i (s0, s1, . . . , si) .

3) A relaying function for node rj where j ∈ {1, . . . , L},
f

(rj)
i : F

nj ∪ {∗} × . . . × F
nj ∪ {∗}� �� �

i+1 times

→ F
nj+1 for each

i ∈ Z+, where f
(rj)
i is used by node rj at time i to

construct

x(rj)
i = f

(rj)
i

�
y(rj)

0 ,y(rj)
1 , . . . ,y(rj)

i

�
.
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4) A decoding function φi+T :
F

nL+1 ∪ {∗} × . . . × F
nL+1 ∪ {∗}� �� �

i+T+1 times

→ F
k for each

i ∈ Z+ is used by node rL+1 at time i + T to estimate
si according to

ŝi = φi+T

�
y(rL+1)

0 ,y(rL+1)
1 , . . . ,y(rL+1)

i+T

�
. (1)

Definition 2: An erasure sequence is a binary
sequence denoted by e∞ � {ei}∞i=0 where
ei = 1{erasure occurs at time i}.

An N -erasure sequence is an erasure sequence e∞ that
satisfies

�∞
l=0 el = N . Alternatively, we denote it as a N -

deterministic erasure channel. The set of N -erasure sequences
is denoted by ΩN . We further denote N1, . . . , NL+1 deter-
ministic erasure network model as N1, . . . , NL+1-erasure
sequences, each occur on a different channel, where for any
j ∈ {1, . . . , L + 1}, the maximal number of erasures on
channel (rj−1, rj) is Nj .

Definition 3: The mapping gn : F
n ×{0, 1} → F

n ∪{∗} of
an erasure channel is defined as

gn(x, e) =

	
x if e = 0,

∗ if e = 1.
(2)

Denoting with ej+1 ∈ ΩNj+1 an admissible erasure sequence
in channel (rj , rj+1), for any erasure sequence ej,∞ and any
(n1, . . . , nL+1, k, T )F-streaming code, the following input-
output relations holds for the erasure channel (rj , rj+1) for
each i ∈ Z+:

y(rj+1)
i = gnj

�
x(rj)

i , ej+1
i

�
Definition 4: An (n1, . . . , nL+1, k, T )F-streaming code is

said to be (N1, N2, . . . , NL+1)-achievable if the following
holds for any Nj-erasure sequence ej,∞ ∈ ΩNj (j ∈
{1, . . . , L + 1}), for all i ∈ Z+ and all si ∈ F

k, we have

ŝi = si

where

ŝi = φi+T

�
gnL+1

�
x(rL)

0 , eL+1
0

�
, . . . , gnL+1

�
x(rL)

i+T , eL+1
i+T

��
(3)

and for previous nodes

x(rj)
i = f

(rj)
i

�
gnj

�
x(rj−1)

0 , ej
0

�
, . . . , gnj

�
x(rj−1)

i , ej
i

��
.

(4)
Definition 5: The rate of an (n1, n2, . . . , nL+1, k, T )F-

streaming code is k
n where n = max{n1, n2, . . . , nL+1}.

Definition 6: The (T, N1, . . . , NL+1) capacity, denoted
by CT,N1,...,NL+1 , is the supremum rate achievable by
(n1, . . . , nj+1, k, T )F streaming code that is (N1, . . . , NL+1)-
achievable.

Remark 1: Throughout this work, we assume that n, k and
the field size (|F|) can be (individually) controlled by the
system designer. Note that we can represent each symbol in F

using log |F| bits. Thus, the length of each channel packet is
n log |F| bits. In some applications the length of each packet
may need to be fixed, although n and F may still be under the
control of the system designer.

If, for a specific j, Nl = 0 for all l �= j and Nj �= 0, then
the L-node relay network with erasures reduces to a point-to-
point packet erasure channel. It was previously shown in [10]
that the maximum achievable rate of the point-to-point packet
erasure channel with Nj = N arbitrary erasures and delay of
T symbols denoted by CT,N satisfies

CT,N =

	
T−N+1

T+1 T ≥ N

0 otherwise.
(5)

It was further shown that the capacity of the point-to-
point channel with N arbitrary erasures and delay of T could
be achieved by diagonally interleaving (T + 1, T − N + 1)
MDS code. We recall that for any natural numbers L and M ,
a systematic maximum-distance separable (MDS) (L+M, L)-
code is characterized by an L×M parity matrix VL×M where
any L columns of



IL VL×M

� ∈ F
L×(L+M) are independent.

It is well known that a systematic MDS (L + M, L)-code
always exists as long as |F| ≥ L + M [19]. To simplify
notation, we sometimes denote N b

a =
�b

l=a Nl. We will take
all logarithms to base 2 throughout this paper. We denote the
i’th element of vector x as x[i], or sometime as [x][i].

C. Known Results for Three Node Relay Network

In [1], a three node relay network (i.e., L = 1) was
analyzed. We first discuss the upper bound stated in [1], and
note an issue with the upper bound [17]. Assume a delay
constraint of T , maximum of N1 erasures in the source-relay
link and maximum of N2 erasures in the relay-destination link.
The upper bound derived in [1] is, in fact, a minimization of
two expressions R ≤ min(R+

1 , R+
2 ), where

R+
1 =

T − N1 − N2 + 1
T − N2 + 1

, R+
2 =

T − N1 − N2 + 1
T − N1 + 1

.

We explain how the upper bound R+
1 remains valid, but the

upper bound R+
2 is not valid [17].

Validity of R+
1 : Consider a cut-set bound where the relay and

destination terminal cooperate, and there are N1 erasures on
the source-relay link. Following (5), a simple upper bound is:

R ≤ T − N1 + 1
T + 1

.

It is observed in [1] that one can tighten this bound by
effectively reducing the delay from T to T − N2. This can
be justified as from the point of view of each source packet
si, we can assume that the last N2 packets in each interval
[i, i+T ] for all i ≥ 0, are erased on the relay-destination link.
Although such an erasure pattern is clearly worse than our
assumed model (as we assumed a global limit of N2 erasures
on the relay-destination link), it can be shown that the decoder
must be able to recover every packet si for such a pattern.
In particular, since the source does not have any information
with respect to the erasures (on any of the links) it must handle
the worst-case scenario (i.e., when a burst of N2 erasures
happens in the last N2 positions in the interval [i, i + T ] for
the recovery of source packet si) for each i). This leads to the
following upper bound.
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Theorem 1 ((Eq. (18) in [1]): For any (T, N1, N2), recall-
ing that the point-to-point capacity satisfies (5), we have

R ≤ CT−N2,N1

=

	
T−N1−N2+1

T−N2+1 T ≥ N1 + N2

0 otherwise.
(6)

Remark 2: Our upper bound presented for L + 1 node
relay network in Section II is, in fact, a generalization of
Theorem 1 (when L = 1, the proof presented in Section II
proves Theorem 1).
Validity of R+

2 : In [1], it was further argued that we can
upper bound R ≤ R+

2 as well. In order to argue this, a cut-set
bound where the source and relay cooperate was considered
when there are N2 erasures on the relay-destination link. The
naive upper bound again will be

R ≤ T − N2 + 1
T + 1

.

The authors then attempted to argue that the delay can be
further reduced from T to T −N1. To claim this, the authors
assumed that in each interval [i, i+ T ], if the first N1 packets
are erased, the decoder should still be able to recover all the
source packets. Unfortunately, this argument does not hold,
as the relay node is aware of the erasures on the source-relay
link. Thus, a scheme that is designed for a global constraint of
N1 erasures on the source-relay link may not be applicable to
the case when we introduce a more stringent erasure pattern.
In fact, in [20], similar ideas have been utilized to improve
the achievable rate over the rate in [1] and the present paper
for the case when L = 1.

As an achievable scheme, a coding scheme coined SWDF
was presented in [1] and shown to achieve:

R =
T − N1 − N2 + 1

T − min(N1, N2) + 1
. (7)

In this paper we will refer to this scheme as state-independent
SWDF for reasons that will be explained later. Although [1]
incorrectly claims this to be the capacity for all N1 and
N2, we note that the expression in (7) achieves the upper
bound of Theorem 1 (and thus establishes capacity) when
N1 ≥ N2.

D. Main Results

In this paper, we first derive a simple upper bound on the
achievable rate in L+1-node relay network as a generalization
of Theorem 1.

Theorem 2: Assume a network with L relays. For a target
overall delay of T , where the maximal number of arbitrary
erasures in link (rj−1, rj), j ∈ {1, . . . , L + 1} is Nj . The
capacity is upper bounded by

R ≤
⎧⎨
⎩

T−�L+1
l=1 Nl+1

T−�L+1
l=2 Nl+1

= CT−�L+1
l=2 Nl,N1

T ≥�L+1
l=1 Nl

0 otherwise.

(8)

Fig. 2. A three-node relay network.

Denoting

nmax � max
j∈{1,...,L+1}

⎛
⎝T −

L+1�
l=1,l �=j

Nl + 1

⎞
⎠ , (9)

we show the following rate is achievable using a new coding
scheme that we call state-dependent SWDF.

Theorem 3: Assume a link with L relays. For a target
overall delay of T , where the maximal number of arbitrary
erasures in link (rj , rj+1), j ∈ {0, . . . , L} is Nj+1 and
T ≥ �L+1

l=1 Nl. When |F| ≥ nmax, the following rate is
achievable.

R ≥ T −�L+1
l=1 Nl + 1

T − minj

��L+1
l=1,l �=j Nl

�
+ 1 + nmax�log(nmax)�

log(|F|)
(10)

where nmax is defined in (9).
Remark 3: When N1 ≥ Nj , ∀j �= 1, and |F| → ∞, the

achievable rate of state-dependent SWDF (10) achieves the
upper bound of Theorem 2 (and thus establishes capacity).

Remark 4: Comparing (7) and (10) we note that when
|F| → ∞ state-dependent SWDF used over three node network
achieves the same rate as state-independent SWDF.

Remark 5: Although the deterministic erasure model is
formulated in such a way that link (rj−1, rj) introduces only
a finite number of erasures over the discrete timeline, the
suggested upper bound and the suggested achievable coding
rate remains unchanged for the following sliding window
model that can introduce infinitely many erasures on each
communication link. Every message must be perfectly recov-
ered with delay T as long as the number of erasures introduced
in link (rj−1, rj) in any sliding window of size T + 1 does
not exceed Nj . This is further described in Section VI.

E. Motivating Example

Consider a link with up to N = 2 arbitrary erasures,
where the delay constraint the transmission has to meet is
T = 3 packets. The capacity of this link according to (5) is
C3,2 = 2/4. Now, assume that in fact, this link is a three-
node network (L = 1), where up to N1 = 1 erasures occur in
link (r0, r1) and up to N2 = 1 erasures occur in link (r1, r2),
where transmission has to be decoded with the same overall
delay of T = 3 packets. This network is depicted in Figure 2.
The maximal achievable rate of this network according to (6)
is 2/3, which is better than the point-to-point link.

We start by recalling the coding scheme that was shown
in [1] to achieve this upper bound. The example we show next
is the same as provided in [1] for the scenario described above
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TABLE I

A STATE-LESS SWDF STRATEGY FOR A SINGLE RELAY. SYMBOLS BELONG TO THE SAME CODE USED BY THE SOURCE (s) AND SYMBOLS
BELONG TO THE SAME CODE USED BY THE RELAY (r) ARE MARKED WITH A FRAME WITH THE SAME STYLE

Fig. 3. A four-node relay network.

TABLE II

SYMBOLS TRANSMITTED BY NODE r2 WHEN TRYING TO EXTEND THE STATE-LESS SWDF STRATEGY. SYMBOLS

BELONG TO THE SAME CODE ARE DENOTED WITH FRAME WITH THE SAME STYLE

(in which the total delay T = 3 and the maximal number of
erasures in each channel is N1 = N2 = 1).

Suppose node s transmits two bits ai and bi at each discrete
time i ≥ 0 to node d. For each time i, node s transmits the
three-symbol packet x(r0)

i = [ai bi ai−2 + bi−1] according
to Table I where aj = bj = 0 for any j < 0 by convention,
and the symbols highlighted in the same color are generated
by the same block code.

Since channel (s, r) introduces at most N1 = 1 erasure,
each ai and each bi can be perfectly recovered by node
r by time i + 2 and time i + 1 respectively. Therefore,
at each time i, node r should have recovered ai−2 and
bi−1 perfectly with delays 2 and 1 respectively, and it will
re-encode them into another three-symbol packet x(r1)

i+1 =
[bi−1 ai−2 bi−3 + ai−3]. This is depicted in Table I. Since
bi−3, ai−3 and bi−3 + ai−3 are transmitted by node r at time
i − 2, i − 1 and i respectively, it follows from assuming that

channel (r, d) introduces at most N2 = 1 erasure, that node
d can recover ai−3 and bi−3 by time i. Consequently, this
SWDF strategy achieves a rate of 2/3.

An important feature of this code is the fact that it is a state-
less code, i.e., the structure of the code does not depend on
the specific erasure pattern at any of the segments. However,
if another relay is to be considered (i.e., the destination is
now replaced with relay r2), assuming up to N3 = 1 erasure
in link (r2, d), if we directly concatenate the state-independent
SWDF schemes in a simple way, we can support the same rate
(R = 2/3) only if we increase the delay requirement to T = 5.
The network of interest is depicted in Figure 3.

This can be seen since basically using the coding scheme
in Table I, relay r2 can be viewed as source s with delay of
T = 3 packets (essentially, the delay of different symbols is
“reset”). Due to causality, relay r2 can only use the coding
scheme of the sender, depicted in Table II. It can be viewed
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TABLE III

TRANSMISSION OF THE SOURCE IN CHANNEL (r0, r1). SYMBOLS BELONG TO THE SAME CODE ARE MARKED WITH THE SAME COLOR

TABLE IV

TRANSMISSION OF RELAY r1 IN CHANNEL (r1, r2), GIVEN THAT

SYMBOL i WAS ERASED WHEN TRANSMITTED IN LINK (r0, r1).
SYMBOLS BELONG TO THE SAME CODE ARE MARKED

WITH THE SAME COLOR

that when N3 = 1, symbol ai is guaranteed to be recovered
only at time i + 5. To the best of our knowledge, there is no
extension of state-independent SWDF which results in lower
delay.

In this paper, we suggest a state-dependent scheme, i.e.,
a scheme in which the order of symbols in each block code
used (and thus the order in each diagonal) is set according to
the erasure pattern in the previous link. As we demonstrate
later, the order of the symbols is transmitted to the receiver
to allow decoding. Hence, additional overhead is required.
We first show an example of the suggested scheme to the
three-node network, and then show how to extend it to a four-
node network.

In the proposed scheme, the source r0 uses the same code
suggested in [1], i.e., a (3, 2) MDS code that can recover any
arbitrary single erasure with a delay of two symbols combined
with diagonal interleaving (i.e., the block code is applied on
the diagonals). For each time i, the node s transmits the three-
symbol packet x(r0)

i = [ai, bi, ai−2 + bi−1].
When there are no erasures, relay r1 uses the same code

as the source r0 while delaying it by one symbol, i.e.
relay r1 sends the following three-symbol packet x(r1)

i+1 =
[ai, bi, ai−2 + bi−1]. If an erasure occurred, the relay would
send any available symbols (per diagonal) in the order they
were received until it can decode the information symbols
from this block code. Then, the erased symbols will be sent.
For example, assume that the packet sent at time i from the
source was erased in link (r0, r1). Relay r1 will send x(r1)

i+1 =
[bi+1, bi, ai−2 + bi−1] and x(r1)

i+2 = [ai+1, ai, ai−1 + bi] as
depicted in Table IV below. Again, symbols belong to the same
block code are marked with the same color. Further, headers
which are different than the ones used by r0 are marked with
a frame.

We note that the erasure in time i in link (r0, r1) caused
a change in the order of the symbols in packets i + 1 and
i+2. Denoting the order of symbols sent from r0 in each code
(alternatively on each diagonal) as [1, 2, 3], in this example,
the header of each packet is composed of the location of the
symbols from each block code (the order of the symbols in
each diagonal) as they would appear in the code used by r0.

We show next that the MDS code used by each relay on
each diagonal can be viewed as using a punctured version of
the MDS code that is used by the “bottleneck” relay, which is
the lowest rate MDS code being used. Hence, we note that it
can be viewed as if the suggested coding scheme only changes
the order of symbols per diagonal (taken from the MDS code
with the lowest rate), and it does not add or remove symbols.
Therefore, using a single index per symbol suffices to allow
recovery at each destination.

In our example, as can bee seen in Table IV, at time i relay
r1 sends x(r1)

i = [ai−1 bi−1 ai−3 + bi−2] with header “123”
indicating that the first symbol is the first symbol (marked with
underline) in the code [ai−1 bi ai−1 +bi], the second symbol
is the second symbol in the code [ai−2 bi−1 ai−2 + bi−1]
and the third symbol is the code [ai−3 bi−2 ai−3 + bi−2].

However, following the erasure occurred at link (r0, r1) at
time i, relay r1 can not send symbol ai at time i+1 as planned
(as if there was no erasure). However, it can send bi+1 which
was not erased. With respect to the second symbol, we note
that since ai−1 and ai−1+bi were received, bi can be recovered
and used. Similarly, since ai−2 and bi−1 were received, symbol
ai−2 +bi−1 can be generated and used. Thus, at time i+1 the
relay can send x(r1)

i+1 = [bi+1 bi ai−2 + bi−1]. To indicate
the change in order of the symbols used in the first code,
the header is changed to “223” which indicates that the first
symbol is the second symbol in the code associated with this
diagonal.

At time i + 2, the relay can recover and send ai. Hence,
it sends x(r1)

i+2 = [ai+1 ai ai−1 + bi] with header “113”
indicating now that the second symbol is the first symbol in
the code associated with this diagonal. It can be easily verified
that the destination can recover the original data at a delay
of T = 3 (assuming any single arbitrary erasure in the link
between the relay and destination).

This concept can be applied to additional relays if they exist.
For example consider four-node network (L = 2). The trans-
mission scheme on the next relay r2 (in this specific example)
is the same as the transmission scheme of the first relay,
i.e., in case there is no erasure, transmit (on each diagonal)
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TABLE V

TRANSMISSION OF RELAY r2 IN CHANNEL (r2, r3), GIVEN THAT SYMBOL
i + 2 WAS ERASED WHEN TRANSMITTED IN LINK (r1, r2). SYMBOLS

BELONG TO THE SAME CODE ARE MARKED

WITH THE SAME COLOR

the symbols in the same order as received, delayed by one
symbol (i.e., a total delay of two symbols from the sender).
If an erasure occurred before r2 could decode the information
symbols (per diagonal), the relay will forward the non-erased
symbols (as we show next, it is guaranteed that there will
be enough such symbols until the relay could decode the
information symbols). When the information symbols can be
decoded, the relay will transmit the erased symbols.

For example, in case the symbol transmitted from relay r1 to
r2 at time i + 2 is erased, the suggested transmission scheme
of relay r2 is given in Table V below. Again, symbols that
belong to the same block code are marked with the same color.
Further, headers that are different than the ones used by relay
r1 are marked with a frame.

We note that the erasure in time i+2 in link (r1, r2) caused
a change in order of the symbols in packets i + 3 and i + 4
(the order of symbols in time i + 2 is not the original order,
yet it is the same as was transmitted from r1 at time i + 1).
Since the same (3, 2) code is used (with a different order of
symbols which is communicated to the receiver), it can be
easily verified that each packet can be recovered up to delay
of T = 4 symbols for any arbitrary erasure in the link between
the relay and the destination.

In this example, the maximal size of the header is three
numbers, each taken from {1, 2, 3}. Hence, its maximal size
of the header is 3 log(3) bits. Since the block code used in
each link transmits two bits using three bits in every channel
use, we conclude that the scheme achieves a rate of

R =
2

3 + 3�log(3)� . (11)

We show next that this idea can be extended to transmitting
symbols taken from any field F thus, in general, the achievable
rate when T = 4 and N1 = N2 = N3 = 1 is

R =
2 · log(|F|)

3 · log(|F|) + 3�log(3)�
=

2

3 + 3�log(3)�
log(|F|)

, (12)

which approaches 2/3 as the field size increases. As we further
show next, the upper bound for this scenario is indeed 2/3.

II. PROOF OF THE UPPER BOUND

Fix any (N1, . . . , NL+1, T ). Suppose we are given an
(N1, . . . , NL+1)-achievable (n1, . . . , nj+1, k, T )F-streaming

code for some n1, . . . , nj+1, k and F. Our goal is to show
that

k

max {n1, . . . , nL+1} ≤ T −�L+1
l=1 Nl + 1

T −�L+1
l=2 Nl + 1

. (13)

when T ≥�L+1
l=1 Nl and equals zero otherwise.

To this end, we let {si}i∈Z+ be i.i.d. random variables
where s0 is uniform on F

k. Since the (n1, . . . , nj+1, k, T )F-
streaming code is (N1, . . . , NL+1)-achievable, it follows from
Definition 4 that

H
�
si

��� yrL+1
0 ,yrL+1

1 , . . . ,yrL+1
i+T

�
= 0 (14)

for any i ∈ Z+ and any ej,∞ ∈ ΩNj . Consider the two cases.
Case T <

�L+1
l=1 Nl:

Let ej,∞ ∈ ΩNj be the error sequence on link (rj−1, rj)
where j ∈ {1, 2, . . . , L + 1} such that

ej,∞
i =

	
1 if

�j−1
l=1 Nl ≤ i ≤�j

l=1 Nl − 1
0 otherwise.

(15)

We note that (15) means that y(r1)
N1

is the first packet which

can be used to recover s0 at r1. Further, y(r2)
N1+N2

is the first
packet which can be used to recover s0 at r2. Continuing the
transmission across all other relays, it follows that y(rL+1)�

l Nl

is the first packet which can be used to recover s0. Since
T <

�L+1
l=1 Nl it follows the delay constraint can not be met.

Hence, due to (15) and Definition 1, we have

I
�
s0;y

rL+1
0 ,yrL+1

1 , . . . ,yrL+1
T

�
= 0. (16)

Combining (14), (16) and the assumption that T <�L+1
l=1 Nl, we obtain H(s0) = 0. Since s0 consists of k

uniform random variables in F, the only possible value of
k is zero, which implies

k

max {n1, . . . , nL+1} = 0. (17)

Case T ≥�L+1
l=1 Nl:

The proof follows the footsteps of [1] for the link between
the source and the first relay (link (r0, r1)). First we note that
for every i ∈ Z+, message si has to be perfectly recovered by
node r1 by time i + T −�L+1

l=2 Nl given that s0, s1, . . . , si−1

have been correctly decoded by node r1, or otherwise a length
N2 burst erasure from time i + T −�L+1

l=2 Nl + 1 to i + T −�L+1
l=3 Nl introduced on channel (r1, r2) followed by a length

N3 burst erasure from time i + T −�L+1
l=3 Nl + 1 to i + T −�L+1

l=4 Nl introduced on channel (r2, r3) and so on until a
length NL+1 burst erasure from time i + T − NL+1 + 1 to
i + T would result in a decoding failure for node r1, node
r2 and all the nodes up to the destination rL+1.2

2Although we didn’t formally require the relays to decode the message,
analyzing the suggested erasure pattern shows that all nodes have exactly
the same time indices, [i : i + T − NL+1

2 ], available for processing si.
Recalling from Definition 1 that the relaying functions are casual, requiring
that the destination can recover message si given that s0, s1, . . . , si−1 have
been correctly decoded by the destination from these packets is equivalent to
requiring that each of the nodes can recover it from the same packets (given
that all past messages were correctly recovered).
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Fig. 4. A periodic erasure sequence with period T − NL+1
2 + 1.

Recalling that NL+1
2 =

�L+1
l=2 Nl it then follows that

H

�
si

��� �x(r0)
i ,x(r0)

i+1 , . . . ,x(r0)

i+T−NL+1
2

�
\
�
xr0

θ1
, . . . ,xr0

θN1

�
,

s0, . . . , si−1

�
= 0 (18)

for any i ∈ Z+ and N1 non-negative integers denoted by
θ1, . . . , θN1 . We analyze the following periodic erasure pattern
on the first link. Assume that the last N1 packets in windows
[0 : 1 · (T −NL+1

2 +1)−1], [T −NL+1
2 +1 : 2 · (T −NL+1

2 +
1)−1], . . . , [m·(T −NL+1

2 +1) : (m+1)·(T −NL+1
2 +1)−1]

for all m ≥ 0 are erased.
Appendix A describes a specific erasure pattern for which

for each j ∈ N we have

H

�
s0, . . . , s

j·(T−NL+1
2 +1)

��� �x
(r0)

m·(T−NL+1
2 +1)

,x
(r0)

m·(T−NL+1
2 +1)+1

,

. . . ,x
(r0)

m·(T−NL+1
2 +1)+T−N1−NL+1

2

�j

m=0

�
= 0, (19)

where the conditional entropy involves j(T − NL+1
2 +

1) + 1 source messages and (j + 1)(T − NL+1
1 + 1) channel

packets. Further, it can be seen in Figure 9, in case a packet
sent at time i is erased, it is recovered (at the latest) at time
i + T − NL+1

2 + 1.
This conditional entropy is, in fact, the conditional entropy

of a point-to-point streaming code with rate k/n1 and delay
T − NL+1

2 which was designed to recover any N1 erasures.
In particular, the point-to-point code can recover from the
periodic erasure sequence ẽ∞ depicted in Figure 4, which is
formally defined as

ẽi =

	
0 if 0 ≤ i mod (T − NL+1

2 + 1) ≤ T − NL+1
1

1 otherwise

(20)

By standard arguments which are rigorously elaborated in
Appendix B, we conclude that

k

max {n1, . . . , nL+1} ≤ k

n1

≤ T −�L+1
l=1 Nl + 1

T −�L+1
l=2 Nl + 1

= CT−�L+1
l=2 Nl,N1

. (21)

III. STATE-DEPENDENT SWDF

As mentioned above, the achievable scheme we analyze is a
state-dependent SWDF scheme. This scheme is composed of a
block code combined with diagonal interleaving. We start with
some basic definitions of point-to-point block codes, which
would be the basis for this scheme.

Definition 7: A point-to-point (n, k, T )F-block code con-
sists of the following

1) A sequence of k symbols {u[l]}k−1
l=0 where u[l] ∈ F.

2) A generator matrix G ∈ F
k×n. The source codeword is

generated according to

[x[0] x[1] . . . x[n − 1]] = [u[0] u[1] . . . u[k − 1]]G
(22)

3) A decoding function ϕl+T : F ∪ {∗} × . . . × F ∪ {∗}� �� �
n times

→

F for each l ∈ {0, 1, . . . , k−1}, where ϕl+T is used by
the destination at time min(l+T, n−1) to estimate u[l]
according to

û[l] =

�
ϕl+T (y[0], y[1], . . . , y[l + T ]) if l + T ≤ n − 1

ϕl+T (y[0], y[1], . . . , y[n − 1]) if l + T > n − 1

(23)
Definition 8: A point-to-point (n, k, T )F-block code is said

to be N -achievable if the following holds for any N -erasure
sequence e∞ ∈ ΩN : For the (n, k, T )F-block code, we have

û[l] = u[l] (24)

for all l ∈ {0, 1, . . . , k − 1} and all u[l] ∈ F, where

û[l] =

�
ϕl+T (g1(x[0], e0), . . . , g1(x[l + T ], el+T )) l + T ≤ n − 1

ϕl+T (g1(x[0], e0), . . . , g1(x[n − 1], en−1)) l + T > n − 1

(25)

with g1 being the symbol-wise erasure function defined in (2).
We define

k = T −
L+1�
l=1

Nl + 1

nj+1 = T −
L+1�

l=1,l �=j+1

Nl + 1

Tj+1 = T −
L+1�

l=1,i�=j+1

Nl. (26)

and show that while ignoring the additional header, the rate
of the suggested coding scheme in channel (rj , rj+1) is

Rj =
k

nj+1
.

Hence, the overall rate (again, ignoring the additional
header) is

R =
k

maxj{nj+1}

=
T −�L+1

l=1 Nl + 1

T − minj

�L+1
l=1,l �=j Nl + 1

� C+
T,N1,...,NL+1

The suggested coding scheme is composed of (nj+1, k,
N j

1 + Tj)F-block codes combined with diagonal interleaving.
Each relay rj is using a collection of (nj+1, k, N j

1+Tj)F-block
codes, where the specific code that depends on the erasure
pattern in the previous relay, i.e., each code can be different.
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TABLE VI

AN EXAMPLE OF A SINGLE CODE TRANSMITTED IN rj

More formally, let si[l] be the l’th symbol of the source
message si and let x

(rj)
i [l] be the l’th symbol of the output of

encoding function f
(rj)
i in relay rj . For each i ∈ Z+, a single

transmission function of relay rj constructs�
x

(rj)

i+Nj
1
[0] x

(rj)

i+Nj
1+1

[1] · · · x
(rj)

i+Nj
1+nj+1−1

[nj+1 − 1]
�

�

[si[0] si+1[1] · · · si+k−1[k − 1]] × G(rj)
i , (27)

where we show next that G(rj)
i is a k×nj+1 generator matrix

of an (nj+1, k) MDS code (not necessarily a systematic code
as the order of transmission is a function of the erasure pattern
in previous links). We assume that for any i < 0, si = 0.

Denoting with

s̃i = [si[0] si+1[1] · · · si+k−1[k − 1]] , (28)

an example of the diagonal interleaving of a single code is
given in Table VI below.

Therefore, each transmitted packet from relay rj is com-
posed of nj+1 symbols, each of which is taken from a different
block code. Recalling that [̃si ×G(rj)

i ][j] means that we take
the j’th element from the vector resulting from multiplying s̃i

with the generator matrix G(rj)
i , an example of a packet sent

by relay rj is given in (29) below.

x(rj)

i+Nj
1

=

⎡
⎢⎢⎢⎢⎢⎢⎣

x
(rj)

i+Nj
1
[0]

x
(rj)

i+Nj
1
[1]

...

x
(rj)

i+Nj
1
[nj+1 − 1]

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

[̃si × G(rj)
i ][0]

[̃si−1 × G(rj)
i−1 ][1]

...

[̃si−nj+1+1 × G(rj)
i−nj+1+1][nj+1 − 1]

⎤
⎥⎥⎥⎥⎦ (29)

We note again that the specific structure of each G(rj)
i is

defined according to the erasure pattern of the previous links.
We describe next the process of generating G(rj)

i .

• At the sender (r0), use an (n1, k) MDS code. Hence,
G(r0)

i is the generator matrix of an (n1, k) MDS code.
• Each encoder at relay rj (j ∈ {1, . . . , L}) performs the

following

1) Until time i + N j
1 − 1, store any non-erased sym-

bols from the first Nj received symbols from link

(rj−1, rj), i.e., all non-erased symbols from�
x

(rj−1)

i+N1
j−1 [0], . . . , x(rj−1)

i+N1
j−1+Nj−1

[Nj − 1]
�

.

(30)

2) Start transmitting at time i + N j
1 (while continuing

to store the received symbols from link (rj−1, rj)).
Until time i+N j

1 +k−2, forward the k−1 symbols
received from link (rj−1, rj) by the order they were
received. Noting that Nj + k− 1 = nj − 1, relay rj

forward the k − 1 non-erased symbols from�
x

(rj−1)

i+N1
j−1 [0], . . . , x(rj−1)

i+N1
j−1+nj−2

[nj − 2]
�

.

(31)

3) At time i + N j
1 + k − 1, recover s̃i (assuming that

the code used over link (rj−1, rj) is an (nj , k) MDS
code, relay rj has now k symbols from which s̃i can
be recovered). In Lemma 1 below we prove that it
is feasible for any N1, . . . , NL+1-erasure sequence.

4) Transmit until time i + N j
1 + nj+1 − 1 re-encoded

symbols.3 The encoded symbols should be non-
received symbols from an (nmax, k) MDS code to
be defined below.

5) For each transmitted symbol, attach a header to
enable decoding at relay rj+1.

To establish the validity of the proposed scheme, we first
show the following Lemma.

Lemma 1: If for all l < j, for any j ∈ {1, . . . , L}, and any
i ∈ Z, G(rl)

i is a generator matrix of an (nl+1, k) MDS code
(i.e., that the code used in each previous relay rl is an (nl+1, k)
MDS code) then s̃i can be recovered at time i+N j

1 +k−1 in
relay rj assuming rj knows the structure of code used by
rj−1.

Proof: Assuming N1, . . . , NL+1-erasure sequence means
that for any j ∈ {0, . . . , L}

ej,∞ ∈ ΩNj (32)

i.e., that the maximal number of erasures in link (rj−1, rj)
is Nj . Since we assumed G(rj−1)

i is an (nj , k) MDS code,
and since nj = k + Nj , it follows that it is guaranteed that k
symbols out of the nj transmitted symbols will not be erased.
Further, since relay rj−1 starts sending the coded symbols
at time i + N j−1

1 and relay rj starts forwarding the non-
erased symbols received from rj−1 at time i + N j−1

1 + Nj

(after buffering any non-erased symbols from the first Nj

coded symbols) it is guaranteed that relay rj could forward
the k − 1 non-erased coded symbols sent from rj−1 by time
i + N j

1 + k − 2.
In step (3) above, relay rj needs to recover all k information

symbols at time i + N j
1 + k − 1. We note that this step is

feasible since assuming G(rj−1)
i is the generator matrix of an

(nj , k) MDS code, any of its k information symbols can be

3We note that equivalently, the symbol received at time i + Nj
1 + k− 1 by

relay rj , could also be forwarded and the transmission of re-encoded symbols
would start at time i + Nj

1 + k.
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Fig. 5. Two phases of transmission in link (rj , rj+1). The symbols with white background are symbols forwarded from link (rj−1, rj). The shaded symbols
are transmitted after the k information symbols are decoded. Hence, they are either symbols which were erased in link (rj−1, rj) or additional (independent)
linear combinations of the information symbols.

recovered from any k non-erased symbols. We note that relay
rj−1 transmits its code at time indices

[i + N j−1
1 , . . . , i + N j−1

1 + nj − 1]. (33)

Therefore, the last symbol of this code is received at relay rj

at time

i + N j−1
1 + nj − 1 = i + N j−1

1 + T −
L+1�

l=1,l �=j

Nl + 1 − 1

= i + N j−1
1 + Nj+(T −

L+1�
l=1

Nl + 1)−1

= i + N j
1 + k − 1. (34)

These phases are depicted in Figure 5 below. In this exam-
ple, the first nj − k = Nj symbols sent from rj−1 are erased
in link (rj−1, rj). Hence, the last k symbols are forwarded
as-is by relay rj+1 followed by nj+1 − k independent linear
combination of the information symbols. �

We next discuss the structure associated with the matrices
G(rj)

i that ultimately establish that it is indeed a generator
matrix associated with an (nj+1,k) MDS code as required by
the above lemma. First, recall that nmax = max1≤l≤L+1 nl

(which equals (9)), and let Gmax be the generator matrix
associated with (nmax, k) MDS code. Denoting Nmax =
maxj Nj and since nmax = Nmax + k, it follows that the
code associated with Gmax can recover from Nmax erasures
in arbitrary positions.

Proposition 1: Consider any (nj+1, k) block code with a
generator matrix that is generated by puncturing Nmax−Nj+1

columns of the generator matrix Gmax and applying a permu-
tation to the remaining columns. Then such a code is also an
MDS code.

Proof: The proof follows from the fact that collec-
tion of k columns of Gmax are linearly independent and
both puncturing and permutation operations will preserve this
property. �

Corollary 1: The generator matrix generated at relay rj

i.e., G(rj)
i is obtained from Gmax by puncturing Nmax − Nj

columns and permuting the remaining columns.

Proof: The relay first forwards k−1 symbols as stated in
step 2 above. This implies that the first k−1 columns of G(rj)

i

must equal some k−1 columns from Gmax. After the recovery
of the k’th information symbol, relay rj sends nj+1 − k + 1
symbols from s̃i × Gmax that were not sent before by time
i + N j

1 + nj+1 − 1. This is equal to introducing nj+1 − k + 1
unique columns from Gmax (step (4) above) to G(rj)

i which
were not used before. �

We can now state the following:
Corollary 2: At each relay rj , G(rj)

i is a generator matrix
of an (nj+1, k) MDS code for all j.

Proof: This follows using induction (since from the
construction, the generator matrices at the source, G(r0)

i are
generator matrices of an (n1, k) MDS code) as well as
Lemma 1 and Proposition 1. �

For specific examples on how the generator matrices of the
block codes are generated (in different scenarios, i.e., when
the code rate increases or decreases), see Appendix C. Next,
we show the following Lemma.

Lemma 2 (Based on Lemma 3 in [1]): Suppose T ≥ N ,
and let k � T − N + 1 and n � k + N . For any F such
that |F| ≥ n, there exists an N -achievable point-to-point
(n, k, T )F-block code.

Proof: The proof follows directly from the definitions of
the MDS codes. Any (n, k) MDS code is an (n, k, n−1) block
code. Thus, any (n, k) MDS code is (n−k)-achievable where
all symbols can be decoded by the end of the code block.
As mentioned in Section I-A, when |F| ≥ n there exists an
(n, k) MDS code. Therefore, when |F| ≥ n we conclude that
there exists an N -achievable point-to-point (n, k, T )F-block
code. �

Recalling that when transmitting s̃i, relay rj starts its
transmission at time i + N j

1 we have the following corollary.
Corollary 3: For any i ∈ Z+ and for any N1, . . . , NL+1-

erasure sequence, the source packet s̃i can be recovered at
relay rj+1 at time i + T −�L+1

l=j+2 Nl.
Proof: From the construction of the code and Corol-

lary 2, we have that relay rj (for any j ∈ {0, . . . , L}) starts
transmitting (over the diagonal) the coded symbols of s̃i at
time i + N j

1 using an (nj+1, k) MDS code. From Lemma 2
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it follows that for any N1, . . . , NL+1-erasure sequence the
code used in each relay rj to transmit s̃i is Nj+1-achievable
(nj+1, k, N j

1 + Tj+1)F point-to-point block code, i.e., s̃i can
be recovered at relay rj+1 at time

i + N j
1 + Tj+1 = i + N j

1 + T −
L+1�

l=1,l �=j+1

Nl

= i + T −
L+1�

l=j+2

Nl. (35)

�
We take a closer look at the channel between the last relay

and the destination (rL, rL+1). Following Corollary 3 we have
Corollary 4: For any i ∈ Z+ and for any N1, . . . , NL+1-

erasure sequence, s̃i (28) can be decoded at the destination at
time

i + T −
L+1�

l=L+2

Nl = i + T, (36)

i.e., using the construction suggested above, s̃i can be decoded
at the destination with delay of T for any N1, . . . , NL+1-
erasure sequence.

Next, we show that this Corollary means that the con-
struction suggested above generates an (n1, . . . , nL+1, k, T )F

streaming code which is also N1, . . . , NL+1-achievable.
Lemma 3: The streaming code resulting from using G(rj)

i

defined above in each node j ∈ {0, . . . , L} for every i ∈
Z+ is an (n1, . . . , nL+1, k, T )F streaming code which is also
N1, . . . , NL+1-achievable.

Proof:
From Corollary 4 it follows that for any i ∈ Z+, s̃i

can be recovered with an overall delay of T . Recalling that
s̃i = [si[0] si+1[1] · · · si+k−1[k − 1]], si[0] (which is the first
symbol in s̃i), can be recovered with an overall delay of T for
any N1, . . . , NL+1-erasure sequence.

Similarly we note that si[1] (which is the second symbol
in s̃i−1) can be recovered with an overall delay of T − 1 and
si[k−1] (which is the k’th symbol in s̃i−k+1) can be recovered
with an overall delay of T − k for any N1, . . . , NL+1-erasure
sequence. Thus, we conclude that the (n1, . . . , nL+1, k, T )F

streaming code resulting from the construction described
above is an (n1, . . . , nL+1, k, T )F streaming code which is
also N1, . . . , NL+1-achievable. �

It now remains to discuss how the structure of G(rj−1)

can be communicated by relay node rj−1 to relay node rj

to facilitate the decoding at node rj . Following Corollary 1,
we define the header for each symbol as a number that
indicates the location of the column from Gmax that was used
to generate this symbol. Thus, the header attached to each
transmitted symbol from each relay is a number in the range
[1, . . . , nmax] and can be communicated using log nmax bits
per symbol.

We can now present the proof of Theorem 3.
Proof of Theorem 3: We first note that, as mentioned in

Section I-A, assuming |F| ≥ nmax means that an (nmax, k)
MDS code exists. Following Proposition 1 for any j ∈
{0, . . . , L} and any i ∈ Z+, there exists G(rj)

i which is a

generator matrix of an (nj+1, k) MDS code (as they can be
viewed as a result of puncturing the generator matrix of the
(nmax, k) MDS code).

Following Lemma 3 it follows that streaming code resulting
from using G(rj)

i defined above in all nodes j ∈ {0, . . . , L}
for every i ∈ Z+ is an (n1, . . . , nL+1, k, T )F streaming code
which is also N1, . . . , NL+1-achievable. The rate of the code
transmitted from rj , without taking the size of the header into
account, is k

nj+1
. Thus, from Definition 5, the overall rate of

transmission is upper bounded by

R ≤ min
j∈{0,1,...,L}

k

nj+1

= C+
T,N1,...,NL

. (37)

The header attached to each packet sent from relay rj is
generated by stacking the nj+1 headers used by each symbol
generated from an (nj+1, k, N j

1 + Tj)F block code which
is part of each transmission packet. As we defined above,
this header is an integer in [1, . . . , nmax]. Hence, the size
of the header attached to each packet is nj+1 log(nmax) bits.
We further note that the size of the header is upper bounded
by nmax log(nmax).

To conclude, node rj transmits nj+1 coded symbols
(each taken from field F) along with nj+1 log(nj+1) ≤
nmax log(nmax) bits of header to transfer k information sym-
bols (each taken from field F). The overall rate is bounded as

R ≥ min
j

k · log(|F|)
nj+1 · log(|F|) + nmax�log (nmax)�

=
T −�L+1

l=1 Nl + 1

maxj

�
T −�L+1

l=1,l �=j Nl + 1
�

+ nmax�log(nmax)�
log(|F|)

=
T −�L+1

l=1 Nl + 1

T − minj

��L+1
l=1,l �=j Nl

�
+ 1 + nmax�log(nmax)�

log(|F|)
, (38)

where nmax is defined in (9). �

A. Analyzing the Size of the Header Required by
State-Dependent SWDF

The size of the overhead of state-dependent SWDF
decreases only logarithmically with the field size, which for
practical implementations might result in a noticeable rate loss
(which in some cases even suggests that other coding schemes
such as straightforward extension of state-independent SWDF
may result in a better rate). Examining more carefully the
example given in Section I-E where T = 5, N1 = N2 =
N3 = 1 for which we showed that state-independent SWDF
achieves R = 2/3, we note that the suggested coding scheme
achieves R = 3

4+ 4�log(4)�
log(|F|)

which outperforms state-independent

SWDF when |F | > 216.
However, as we demonstrate next, as the number of relays

increases, the required field size for state-dependent SWDF to
outperform the straightforward extension of state-independent
SWDF gets smaller. For simplicity, we analyze the case of
having an odd number of relays (L = 2u − 1, u ∈ Z

+).
We first note that when using straightforward extension of
state-independent SWDF, the delay of different symbols is
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“reset” every two links (i.e., transmission at relays r2, r4 and
so on can be treated as a transmission from the source).
Thus, the optimal rate of straightforward extension of state-
independent SWDF can be found by optimizing the delay
allocated to each such three-node network.

We denote with RSI
m(Tm, N2m−1, N2m) the rate achieved by

state-independent SWDF over the m’th three node network.
We thus have

RSI
m(Tm, N2m−1, N2m) =

Tm − N2m−1 − N2m + 1
Tm − min(N2m−1, N2m) + 1

� kSI
m

nSI
m

,

for 1 ≤ m ≤ L+1
2 . To formally derive the rate of state-

independent SWDF we define concatenation of two streaming
codes.

Definition 9: A concatenation of an (n�
1, . . . , n

�
L+1,

k�, T �)F streaming code with an (n��
1 , . . . , n��

L+1, k
��, T ��)F

streaming code is an (n�
1 + n��

1 , . . . , n�
L+1 + n��

L+1, k
� +

k��, [T �, T ��])F streaming code with the following properties
• Let s = [s�i s��i]T be the input to the concatenated code

where s�i ∈ F
k�

and s��i ∈ F
k��

.
• Let {f (r0)

�
t } be the encoding functions for node r0 of

the first code and {f (r0)
��

t } be the encoding functions for
node r0 of the second code. The encoding function of the
concatenated code outputs�

f
(1)�
t (s�0, . . . , s

�
t) f

(1)��
t (s��0 , . . . , s��t )

�T

.

• Let y(rj)
t denote the input to relay rj . Let {f (rj)

�

t } be
the relaying functions for node rj of the first code and

{f (rj)
��

t } be the relaying functions for node rj of the
second code. The relaying function of the concatenated
code outputs�

f
(rj)

�
t (y(rj)

0 , . . . ,y(rj)
t ) f

(rj)
��

t (y(rj)
0 , . . . ,y(rj)

t )
�T

.

• Let y(rL+1)
t denote the input to the decoder of the con-

catenated code. Denote {ϕ�
t} as the decoding functions

of the first code and {ϕ��
t } as the decoding functions of

the second code. The output of the concatenated code is

ŝt =

#
ϕi+T � (y(rL+1)

0 , . . . ,y(rL+1)
t+T � )� �� �

ŝ�t

ϕi+T ��(y(rL+1)
0 , . . . ,y(rL+1)

t+T �� )� �� �
ŝ��t

$T

.

Following Definition 5, we note that the rate of the con-
catenated code is k�+k��

maxj(n�
j+n��

j ) . Concatenation of M identical

(n1, . . . , nL+1, k, T )
F

streaming codes results in a streaming
code with rate Mk

maxj(Mnj) .

In a network with L = 2u − 1, u ∈ Z
+ relays,

and a delay allocation of {T1, . . . , Tm}, for each m ∈
{1, . . . , L+1

2 }, we analyze the rate resulting from a concate-

nation of
%L+1

2
i=1,i�=m kSI

i = kSI
1 · kSI

2 · · · kSI
m−1 · kSI

m+1 · · ·kSI
L+1

2

Fig. 6. CDF of log(|F |) required for state-dependent SWDF to outperform
state-independent SWDF for different number of relays.

identical state-independent SWDF codes used over each three-
node network composed of nodes {r2m−2, r2m−1, r2m}.

Using the suggested concatenation scheme means that each
state-independent SWDF code, used over the m’th three-node

network, transmits
%L+1

2
m=1 kSI

m information symbols in each
channel use. Hence, from definition 5 we have

RSI−SWDF(T1, . . . , Tm) =%L+1
m=1 kSI

m

max
�
n1

%
m �=1 kSI

m , . . . , nL+1
2

%
m �= L+1

2
kSI

m

� =

min

⎛
⎝kSI

1

nSI
1

, . . . ,
kSI

L+1
2

nSI
L+1

2

⎞
⎠ =

min
m

�
RSI

m(Tm, N2m−1, N2m)
�
.

Thus, we have

RSI−SWDF = max�L+1
2

m=1 Tm≤T

RSI−SWDF(T1, . . . , Tm)

= max�L+1
2

m=1 Tm≤T

min
m

�
RSI

m(Tm, N2m−1, N2m)
�
.

(39)

For example, in case of a five-node network (a network with
three relays), with maximum of N1, N2, N3, N4 erasures
on each link and a total delay of T ≥ �4

j=1 Nj we
have

RSI
1 (T1, N1, N2)=

T1 − N1 − N2 + 1

T1 − min(N1, N2) + 1

RSI
2 (T2, N3, N4)=

T2 − N3 − N4 + 1

T2 − min(N3, N4) + 1

RSI−SWDF= max
T1+T2≤T

min
�
RSI

1 (T1, N1, N2), RSI
2 (T2, N3, N4)

�
.

Figure 6 depicts the cumulative distribution function (CDF)
of log(|F |) required for state-dependent SWDF to outperform
state-independent SWDF as a function of the number of
relays. We randomly draw the maximal number of erasures
on each link (uniformly between 1 and 5). The overall delay
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TABLE VII

AN EXAMPLE OF ONE MDS CODE TRANSMITTED IN RELAY rj WHEN CONCATENATION OF M STREAMING CODES IS USED

constraint is the sum of the maximal number of erasures
over all links plus another random variable drawn uniformly
between 1 and 10. As can be seen, as the number of relays
increases (Up to having 11 relays), the required field size for
the suggested coding scheme to outperform state-independent
SWDF decreases.

Another possible avenue for practical implementation of
state-dependent SWDF (while keeping the field size used by
the code small) is to concatenate several instances of the
same state-dependent code (each using a small field size).
We further suggest using the same block code (per diagonal)
for all streaming codes at each relay which means that the
concatenated streaming code transmits M · k information
symbols at each time instance and that the channel packet
size transmitted from relay rj is M ·nj+1 (where k and nj+1

are defined in (26)). Specifically, denoting with

s̃m
i =

�
si[(m − 1) · k + 0] si+1[1] · · ·
si+k−1[(m − 1) · k + k − 1]

�
, (40)

the information symbols generated at time i and used by the
m’th code, an example of the diagonal interleaving of the
concatenated codes is given in Table VII below. Therefore,
each transmitted packet at relay rj is composed of M · nj+1

symbols.
We thus have the following Lemma.
Lemma 4: When a concatenation of M identical codes is

used, the achievable rate of state-dependent SWDF is

R ≥ T −�L+1
l=1 Nl + 1

T − minj

��L+1
l=1,l �=j Nl

�
+ 1 + nmax�log(nmax)�

M·log(|F|)
. (41)

Proof: Since all the concatenated codes will experi-
ence exactly the same erasures (per link) during transmis-
sion, a single header is enough to generate G(rj)

i at each
relay rj (where the same G(rj)

i is used for all M concate-
nated codes). Thus, Corollary 2 and Lemma 3 holds for
each of the concatenated codes. Recalling (26) and (9) we

therefore have

R ≥ min
j

M · k · log(|F|)
M · nj+1 · log(|F|) + nmax�log (nmax)�

=
M(T −�L+1

l=1 Nl + 1)

M(T − minj

��L+1
l=1,l �=j Nl

�
+ 1) + nmax�log(nmax)�

log(|F|)

=
T −�L+1

l=1 Nl + 1

T − minj

��L+1
l=1,l �=j Nl

�
+ 1 + nmax�log(nmax)�

M·log(|F|)
.

�
Note that the concatenation of M independent copies of an

(n, k)F state-dependent SWDF code over field F or a single
(n, k) code over a field F

M , leads to the same length of
channel packet — Mn log |F| bits. Both approaches will lead
to the same overhead, although the former may be desirable
in practice as it involves code operations over a smaller
field.

IV. AN UPPER BOUND ON THE LOSS PROBABILITY

ATTAINED BY STATE-DEPENDENT SWDF FOR

I.I.D. RANDOM ERASURES

In Section III, the state-dependent SWDF scheme was
described, and a lower bound on its achievable rate was derived
while assuming a deterministic erasure model. In this section,
we develop an upper bound on the average loss probability
when this scheme is applied over channels with random (i.i.d.)
erasures.

Let si[0], si[1], . . . , si[k − 1] be the k source symbols
transmitted by node r0 at each discrete time i. We note that
for the (n1, k) MDS codes used by the sender, the following
property holds:

• For every si[v] located at the (v + 1)th position
of the length-k packet transmitted at time i by
the (n1, . . . , nL+1,k, T )F streaming code over (r0, r1),
ŝ
(r1)
i [v] is generated by the relay, at the latest, at time

i − v + n1 − 1 (i.e., after transmission of n1 symbols
from r0). If there are at most N1 erasures inside the
window {i − v, i − v + 1, . . . , i − v + n1 − 1}, then
ŝ
(r1)
i [v] = si[v].
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Hence, si can be fully recovered at relay r1 if for all v ∈
{0, 1, . . . , k − 1}, in any window {i − v, i − v + 1, . . . ,
i − v + n1 − 1}, there are at most N1 erasures. We bound
the loss probability by analyzing the probability in which in
the window {i− k + 1, i− k + 2, . . . , i + n1 − 1} there are at
most N1 erasures.

Since the state-dependent SWDF encode the same infor-
mation symbols (per diagonal) in each relay, we note that in
the general case, when transmitting the (n1, . . . , nL+1,k, T )F

streaming code over (rj−1, rj):

• ŝ(rj)
i [v] is generated by the relay, at the latest, at time

i+N j−1
1 −v+nj−1 (i.e., after transmission of nj symbols

from relay rj−1). If there are at most Nj erasures inside
the window {i + N j−1

1 − v, i − v + 1, . . . , i + N j−1
1 −

v + nj − 1}, ŝ
(rj)
i [v] = si[v].

Hence, si can be fully recovered at relay rj if for all v ∈
{0, 1, . . . , k − 1}, in any window {i + N j−1

1 − v, i + N j−1
1 −

v+1, . . . , i+N j−1
1 −v+nj−1} there are at most Nj erasures.

Similar to [1], we bound the loss probability by analyzing the
probability in which in the window {i + N j−1

1 − k + 1, i +
N j−1

1 −k+1, . . . , i+N j−1
1 +nj} there are at most Nj erasures.

Denoting the average Loss probability as

PT,N1,N2,...,NL+1 � lim
M→∞

1
M

Pr{ŝi �= si} (42)

achieved by the above state-dependent SWDF strategy under
the random erasure model. Define αj = Pr(ej

0 = 1) to be
the erasure probability in link (rj−1, rj). According to the
achievability conditions we have

Pr

&
ŝi �= si

��� i+n1+1�
u=i−k+1

e1
u ≤ N1,

i+n2+1�
u=i−k+1

e2
u ≤ N2, . . . ,

i+nj+1+1�
u=i−k+1

eL+1
u ≤ NL+1

'
= 0 (43)

for every i ≥ T − NL+1
1 . Since

Pr

���
�

i+n1+1�
u=i−k+1

e1
u > N1

��
	

��
�

i+n2+1�
u=i−k+1

e2
u > N2

��
	



. . .


��
�

i+nL+1+1�
u=i−k+1

eL+1
u > NL+1

��
	
�

≤
2k+2N1+1�
u=N1+1

�2k + 2N1 + 1

u


(α1)u(1 − α1)2k+2N1+1−u

+

2k+2N2+1�
u=N2+1

�2k + 2N2 + 1

u


(α2)u(1 − α2)2k+2N2+1−u + . . .

+

2k+NL+1+1�
u=NL+1+1

�2k + 2NL+1 + 1

u


(αL+1)

u(1−αL+1)
2k+2NL+1+1−u.

(44)

Denoting

κj(T, N1, . . . , NL+1) =

(2k + Nj + 1) max
u∈{Nj+1,··· ,2k+2Nj+1}

�
2k + 2Nj + 1

u

�
,

it follows that

PT,N1,N2,...,NL+1 ≤ κ1(T, N1, . . . , NL+1) · (α1)N1+1+

κ2(T, N1, . . . , NL+1) · (α2)N2+1 + . . .

+ κL+1(T, N1, . . . , NL+1) · (αL+1)NL+1+1.

(45)

where κj does not depend on αj (or on any other αk for any
k �= j). Hence, PT,N1,N2,...,NL+1 decays exponentially fast in
min(N1 + 1, N2 + 1, . . . , NL+1 + 1).

Remark 6: We note that in the derivation of the upper
bound, we required a maximum of Nj erasures in windows of
size nj + k channel packets. When nj + k > T this is a loose
upper bound since we know that the code can recover from
any Nj erasures in a window of size T + 1 channel packets.

V. NUMERICAL RESULTS

In this section, we show the performance of the state-
dependent SWDF scheme on random (i.i.d.) erasure channels
(described in Section IV). We consider L+1-node relay net-
work where i.i.d. erasures are independently introduced to all
channels. We denote with αj the probability of experiencing
an erasure in each time slot for channel (rj−1, rj).

Similar to [1], we will compare state-dependent SWDF with
message-wise decode and forward (DF) and instantaneous
forwarding, which we briefly recall. In message-wise DF, all
the symbols in the same source message are decoded by relay
rj subject to the delay constraint Tj such that

�
j Tj ≤ T .

The overall rate of message-wise DF is

RMessage
T,N1,N2,...,NL+1

= max
(T1,...,TL+1):

�
j Tj≤T

min
�
CT1,N1 , CT2,N2 , . . . , CTL+1,NL+1

�
.

(46)

More precisely, we consider message-wise DF scheme con-
structed by concatenating L + 1 streaming codes where the
j’th code is an (nMessage

j , k, Tj)F-streaming code.
We also consider an instantaneous forwarding (IF) strategy,

which uses a point-to-point streaming code over the L + 1-
node relay network as if the network is a point-to-point
channel. More specifically, under the IF strategy, the source
transmits symbols generated by the streaming code and relay
rj forwards every symbol received from relay rj−1 in each
time slot. The overall point-to-point channel induced by the
IF strategy experiences an erasure if either one of the channels
experiences an erasure. This results in rate

RIF = CT,
�

l Nl
. (47)

Ideally, in order to properly compare the different schemes,
it is desirable to set exactly the same parameters (i.e., same
total delay constraint and the same transmission rate) to all
the coding schemes. Unfortunately, this cannot be done as
fixing one parameter results in different parameter setting for
different schemes. As a result, we fix one parameter at a time
and then find the best code parameters that are feasible with
respect to the other, as explained below. We note in advance
that we are considering a packet erasure channel that either
erases the entire transmitted packet or successfully transmits it.
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Thus, we do not include the difference in field-size of different
codes in our simulations.

In our simulations, we study the error-correcting capabilities
of all schemes in case of having two relays with two different
constraints (which converge for the case of state-dependent
SWDF)

• R = 2/3 and T ≤ 9.
• R ≥ 2/3 and T = 9.

We further simulate a symmetric topology, i.e., we assume
the same error probability for all segments. Since we assume
symmetric topology, we focus on schemes that have the same
error-correcting capabilities for all segments.

• State-dependent SWDF can support (N1, N2, N3) =
2 erasures in each segment with total delay of T =
9 which is constructed using three (6, 4, 5)F streaming
code. While the rate of the code is strictly lower than
2/3 due to the overhead it uses, as we noted above,
it approaches 2/3 as |F| increases.

• Message-wise DF

– R = 2/3, T ≤ 9: MWDF can support rate of
2/3 with (N1, N2, N3) = 1 erasures in each segment
and T1 = T2 = T3 = 2 (which results in T =
6) which is constructed using (3, 2, 2)F streaming
codes. As mentioned in [12], higher rate codes (such
as (4, 3, 3)F) are excluded since (3, 2, 2)F can correct
more erasure patterns.

– T = 9, R ≥ 2/3: With T = 9, we show the per-
formance of Message-wise DF with (N1, N2, N3) =
1 and T1 = T2 = T3 = 3 which results in R =
3/4 which is constructed using (4, 3, 3)F streaming
codes.

• IF

– R = 2/3, T ≤ 9: to achieve R = 2/3, we set
T = 8 and

�
j Nj = 3. Hence, we simulated IF

using a (9, 6, 8)F streaming code.
– T = 9, R ≥ 2/3: When T = 9 we note that

since C9,
�

j Nj
=

10−�j Nj

10 , requiring C9,
�

j Nj
≥

2/3 means that
�

j Nj ≤ 3. Hence, we simulated IF
using a (10, 7, 9)F streaming code.

In Figure 7 we plot the frame loss ratio for state-dependent
SWDF, Message-wise DF and for IF. We further plot the
upper bound (using Equation (44)) for State-dependent SWDF
derived in Section IV with R = 2/3, T ≤ 9 and N1 = N2 =
N3 = 2 while assuming ∀j : αj = α.

Since enforcing rate 2/3 results in a low overall delay (T =
6 for example, in case of message-wise DF), we further plot
the performance of all schemes where we force T = 9 and
allow the rate to be greater than or equal to 2/3 (while trying
to find the lowest rate possible). Figure 8 depicts all schemes
when the rates are as close as possible to 2/3 (from above)
with T = 9.

Finally, we note that our simulations cannot provide a direct
comparison between the performance of difference codes,
as they cannot be set to have identical parameters. Neverthe-
less, we believe that they provide some useful intuition on the
behavior of different schemes considered in the paper.

Fig. 7. Four-node (two relays) network loss probability for state-dependent
SWDF, message-wise DF and IF with T ≤ 9, rate 2/3 and largest N1 +
N2 + N3 where α denotes the erasure probability (same over all hops).

Fig. 8. Four-node (two relays) network loss probability for state-dependent
SWDF, message-wise DF and IF with delay T = 9, R ≥ 2/3 and largest
N1 +N2 +N3 where α denotes the erasure probability (same over all hops).

VI. EXTENSION TO SLIDING WINDOW MODEL

Consider the following sliding window model. For each
j ∈ {1, . . . , L + 1}, channel (rj−1, rj) introduces at most Nj

erasures in any period of T +1 consecutive time slots (sliding
window of size T + 1).

Assuming the sliding window model described above,
denote with Csw

T−�L+1
l=2 Nl,N1

as the upper bound on the

achievable rate for (N1, N2, . . . , NL+1) channel. We further
denote Rsw as the achievable rate assuming the sliding window
model.

Our goal is to show that

Csw
T−�L+1

l=2 Nl,N1
≤ CT−�L+1

l=2 Nl,N1
(48)

and

Rsw =
T −�L+1

l=1 Nl + 1

T − minj

��L+1
l=1,l �=j Nl

�
+ 1 + nmax�log(nmax)�

log(|F|)
.

(49)

With respect to the upper bound, since for any j ∈
{1, . . . , L + 1}, Nj-erasure sequence can be introduced by
channel (rj−1, rj) in the sliding window model (48) holds.
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Fig. 9. Suggested erasure pattern for the first link. Light black time indices are erasures which occur on the other links (and thus preclude using these time
indices in recovering the information message) which is described in (18). Light blue time indices are erasures which occur on the first link. Each information
symbol transmitted at time i is recovered from the channel packets in time indices marked in white, which is described in (50). The maximal delay for
recovery of a packet which was sent at time i and was erased in the first link (transmission marked with solid box) is T − NL1

2 .

Next, we show that the state-dependent scheme can achieve
the same rate under the sliding window model. As was shown
in Section III, for any j ∈ {1, . . . , L+1}, each symbol can be
recovered as long as channel (rj−1, rj) introduces at most
Nj erasures in a window of size nj . From (26) we have
nj < T + 1 for all j ∈ {1, . . . , L + 1}. Hence, it follows that
all L + 1 conditions hold under the sliding window model,
thus the state-dependent SWDF code can recover all symbols
and hence (49) holds.

VII. CONCLUDING REMARKS

This paper proposes a new coding scheme, state-dependent
symbol-wise decode and forward, for streaming codes over a
multi-hop relay network consisting of L relay nodes. We ana-
lyze the rate achieved over a class of packet-erasure networks

where each communication link is subjected to a certain
maximum number of erasures. In the special case when the
communication link between the source and the first relay has
the maximum number of erasures, we establish the optimality
of the proposed link. Our proposed scheme requires that the
packets transmitted at each relay node rj be a function of
the erasure sequence on the link between relay nodes rj−1

and rj . This is in contrast to prior work [12] on the three
node relay setting, where a state-independent coding scheme
was proposed. Our proposed scheme can recover the rate
proposed in [12] for the three-node setup as the field-size
increases. Furthermore, to the best of our knowledge, the
scheme in [12] could not be easily extended to more than
three-nodes. In contrast, our “state-dependent” coding scheme
can be naturally extended to any arbitrary number of relay
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nodes. Although our analysis focuses on a simplistic erasure
model, in section IV showed that the error probability of the
proposed coding scheme could be upper bounded for an i.i.d.
erasure channel, and Section V provided simulation results
showing that the proposed coding scheme exhibits promising
performance over other simple options such as message-wise
DF and instantaneous forwarding.

APPENDIX A
SPECIFIC ERASURE PATTERN USED IN

DERIVATION OF THEOREM 2

The overall erasure pattern is depicted in Figure 9 where
time indices shaded with light black are the erasures on the
other links (thus these channel packets cannot be used to
recover the information message) and time indices shaded
with gray are erasures on the first link. We therefore have,
(50), shown at the bottom of the page, where the conditional
entropy involves j(T − NL+1

2 + 1) + 1 source messages and
(j + 1)(T − NL+1

1 + 1) channel packets.

APPENDIX B
DERIVATIONS IN PROOF OF THEOREM 2

Derivation of (21): Since the (N1, . . . , NL+1)-achievable
(n1, . . . , nL+1, k, T )F-streaming code restricted to channel
(r0, r1) can be viewed as a point-to-point streaming code
with rate k/n1 and delay T − NL+1

2 which can correct the
periodic erasure sequence ẽ∞ illustrated in Figure 4, it follows
from the arguments in [11] Section IV-A that (21) holds.
For the sake of completeness, we present a rigorous proof
below.

Using (19), we have

|F|k×[j(T−NL+1
2 +1)+1] ≤ |F|n×(j+1)(T−NL+1

1 +1) (52)

because j(T − NL+1
2 + 1) + 1 source messages can take

|F|k×[j(T−NL+1
2 +1)+1] values and (j+1)(T−NL+1

1 +1) chan-

nel packets can take at most |F|n×(j+1)(T−NL+1
1 +1) values for

each j. Taking logarithm on both sides of (52) followed by
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Using the chain rule, we have

H
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Thus, for each j ∈ N we have
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= 0, (51)
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TABLE VIII

EXAMPLE OF INCREASING THE RATE BETWEEN LINKS. IN THIS EXAMPLE,
Nj+1 = 2, Nj+2 = 1, T � = 4, HENCE k

nj+2
= 2/4 < 2/3 =

k
nj+1

. ASSUMING SYMBOL i + Nj
1 AND i + Nj

1 + 2 WERE

ERASED WHEN TRANSMITTED IN LINK (rj , rj+1).
PARITY SYMBOL ARE SHADED

TABLE IX

EXAMPLE OF REDUCING RATE BETWEEN NODES. IN THIS EXAMPLE,
Nj+1 = 1, Nj+2 = 2, T � = 4, HENCE k

nj+1
= 2/3 > 2/4 = k

nj+2
.

ASSUMING SYMBOL i+Nj
1 WAS ERASED WHEN TRANSMITTED IN

LINK (rj , rj+1). PARITY SYMBOLS ARE SHADED

dividing both sides by j, we have

k[(T − NL+1
2 + 1) + 1/j] ≤ n(1 + 1/j)(T − NL+1

1 + 1)
(53)

Since (53) holds for all j ∈ N, it follows that (21) hold.

APPENDIX C
EXAMPLES FOR RATE CHANGE IN RELAY

As mentioned above, relay rj may need to increase or
decrease the rate of the code used by relay rj−1. Below,
we show examples for the following two cases:

• k
nj+2

> k
nj+1

. This means that nj+2 < nj+1, i.e., that
the block size of the MDS code used by relay rj+1 is
smaller than the block size used by relay rj . At time
i+T −�L+1

j+1 Nl +1, node rj+1 can recover the original
data and send any of the erased symbols of the code used
by rj .
An example is given in Table VIII for Nj+1 = 2,
Nj+2 = 1, T � = 4 (where T � = T −�l=1,l �=j+1,j+2 Nl).

We note that in this example k = T − �
Nl + 1 =

T � − Nj+1 − Nj+2 = 2.
Relay rj+1 forwards the first k − 1 = 1 symbols it
receives. At i+N j

1 +3 the relay can recover the original
data. Hence, from this point it sends (for example) the
erased symbols.

• k
nj+2

< k
nj+1

. This means that nj+2 > nj+1, i.e., the
block size of the code used by relay rj+1 is larger than
the block size used by relay rj .

At time i+T−�L+1
j+1 Nl+1, relay rj+1 can again recover

the original data and hence transmit additional nj+2 − k
symbols needed to allow handling any Nj+2 erasures in
the link (rj+1, rj+2).
An example is given in Table IX for Nj+1 = 1, Nj+2 =
2, T � = 4 (where, again, T � = T −�

l=1,l �=j+1,j+2).
Relay rj+1 forwards the first k − 1 = 1 symbols it
receives. At i+N j

1 +2, the relay can recover the original
data. Hence, from this point is sends (for example) the
erased symbols while adding parity symbols to reach the
required rate.
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